function.
nsics fits
lly, hard
and there
ire some
yrizon for

—

Journal of

raphy and
.Springer-

ion. [EEE
g for Data

retrieval for
» on Digital

content for

on todigital

on.
-on-the-spot
3(1).

wernational
Department
Proceedings
I, 47(10).
The case for

yrensics Re-

iges. In Pro-
, and Signal

thout written

Validation of Digital Forensics Tools 91

Chapter V

Validation of Digital
Forensics Tools

Philip Craiger, University of Central Florida, USA
Jeff Swauger, University of Central Florida, USA
Chris Marberry, University of Central Florida, USA

Connie Hendricks, University of Central Florida, USA

Abstract

An important result of the U.S. Supreme Courts Daubert decision is that the digital
forensic tools must be validated if the results of examinations using those tools are to
be introduced in court. With this audience in mind, our chapter describes important
concepts in forensic tool validation along with alternative just-in-time tool validation
method that may prove useful for those who do not have the capability of conducting
extensive, in-depth forensic tool validation efforts. The audience for this chapter is the
law enforcement agent and industry practitioner who does not have a solid theoretical
background—fromtraining or experience—in software validation, and who is typically
time-constrained in the scope of their validation efforts.

Introduction

As with all other forensic disciplines, digital forensic techniques and tools must meet
basic evidentiary and scientific standards to be allowed as evidence in legal proceedings.
In the United States, the requirements for the admissibility of scientific evidence and

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

92 Craiger, Swauger, Marberry & Hendricks

expert opinion were outlined in the precedent setting U.S. Supreme Court decision
Daubert vs. Merrell Dow Pharmaceuticals, Inc., 509 U.S. 579 (1993). The U.S. Supreme
Court found thatevidence or opinion derived from scientific or technical activities must
come from methods that are proven to be “scientifically valid” to be admissible in a court
of law. The term “scientifically valid” suggests that the tools and techniques are capable
of being proven correct through empirical testing. In the context of digital forensics, this
means that the tools and techniques used in the collection and analysis of digital
evidence must be validated and proven to meet scientific standards.

Traditional software validation testing is performed as a routine part of any software
development effort. Software validation has been well studied, and the basic tenets of
a successful validation approach have been codified in numerous standards accepted
by such international bodies as the IEEE. There are significant references and standards
covering the role of validation testing during software development, as illustrated in the
references to this chapter.

There is often some confusion between the terms validation and verification as applied
to software testing. The definitions provided in “General Principles of Software Valida-
tion; Final Guidance for Industry and FDA Staff” (http://www.fda.gov/cdrh/comp/

guidance/938.html):

Software verification provides objective evidence that the design outputs of a
particular phase of the software development life cycle meet all of the specified
requirements for that phase. Software verification looks for consistency, complete-
ness, and correctness of the software and its supporting documentation, as it is
being developed, and provides support for a subsequent conclusion that software
is validated. Software testing is one of many verification activities intended to
confirm that software development output meets its input requirements. Other
verification activities include various static and dynamic analyses, code and
document inspections, walkthroughs, and other techniques.

o Software validation is a part of the design validation for a finished device. . .considers
software validation to be ‘confirmation by examination and provision of objective
evidence that software specifications conform to user needs and intended uses,
and that the particular requirements implemented through software can be consis-
tently fulfilled.” In practice, software validation activities may occur both during,
as well as at the end of the software development life cycle to ensure that all
requirements have been fulfilled. ...the validation of software typically includes
evidence that all software requirements have been implemented correctly and
completely and are traceable to system requirements. A conclusion that software

is validated is highly dependent upon comprehensive software testing, inspec-

tions, analyses, and other verification tasks performed at each stage of the software
development life cycle.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

yurt decision
J.S. Supreme
stivities must
ible in a court
s are capable
orensics, this
sis of digital

any software
asic tenets of
ards accepted
and standards
istrated in the

ion as applied
tware Valida-
v/cdrh/comp/

n outputs of a
(the specified
1cy, complete-
tation, as it is
| that software
es intended to
ements. Other
ses, code and

ice...considers
on of objective
intended uses,
can be consis-
ir both during,
nsure that all
zally includes
correctly and
that software
sting, inspec-
fthe software

thout written

Validation of Digital Forensics Tools 93

Validation of Digital Forensic Tools

If the developer or manufacturer validates software, one would presume that it should
address requirements as specified in Daubert. The problem is that end users of the
software rarely receive information as to the methods or results of the validation testing
performed on the software. Consequently, end users are not capable of offering evidence
or testimony in court to support the assumption that the software used in an investigation
worked as intended. Some companies will provide representatives to give expert testi-
mony about the validity of their software if required during a court case, but that is not
something the average examiner-—local or state law enforcement agent or industry
practitioner—can rely upon or expect.

A good deal of forensic software is developed on an ad hoc basis, often by small labs
or individuals who recognize a need and provide a product to address it. Because of its
ad hoc nature the software tools often do not undergo extensive development testing
or planning. This software is sometimes shared among practitioners, or provided to the
public as open source software. Practitioners who will use this software in examinations
will be required to perform their own validation testing in order to assure both themselves
and the courts of the suitability of their tools and results.

Our experience suggests that most practitioners have little or no training or experience
in software validation. Consequently, there are several practical matters that limit the law
enforcement agents or industry practitioner’s ability to perform validation at the same
level rigor as the professional software engineer or developer. Foremost is that law
enforcement agents and industry practitioners would need documentation tailored to
their level of expertise in the field of digital forensics. Second is that in practice there are

- typically time constraints that limit the scope of the practitioners validation efforts to

‘only a subset of the functions of the tool that will be used in the current examination.

In practice, there are few opportunities for digital forensic practitioners to conduct
thorough validation tests. One reason is time: several law enforcement agencies,
including, local, state, and federal agencies, have informed us of several months to years
of backlogged cases involving digital forensic examinations, some as long as two years.
Clearly need is outstripping production. Any process that will reduce the amount of time
spentexamining a system, while maintaining a high level of quality control, is advanta-
geous to the forensic practitioner as well as to the judicial system. Below we describe a
more efficient method of test validation that meets the pressing needs of forensic
practitioners.

Limitations in Organized Digital Forensics Validation Efforts

The National Institute for Standards and Technology’s (NIST) Computer Forensics Tool
Testing (CFTT: www.cftt.nist.gov) division is one government entity that formally tests
computer forensics software. CFTT performs extremely rigorous scientific tests to
validate software tools used in digital forensic examinations. CFTT has and continues
to perform testing on numerous computer forensic software applications, and has
identified various problems that have been addressed by the software vendors. Unfor-

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

94 Craiger, Swauger, Marberry & Hendricks

tunately, the ability of one organization to examine all forensic software products and
their variations is limited due to the sheer magnitude of the task (Craiger, Pollitt, &
Swauger, in press).

The digital forensics community cannot rely on a single certifying body to test and
evaluate all forensic software, as the sheer pace of change and number of software
products is overwhelming (Craiger et al., in press). In addition, software tools written by
forensic examiners—that are not commercial products—often provide additional func-
tionality examiners find useful (such as EnCase scripts). Such software, unlessitis widely
distributed and used, will not rise to the attention of major validation organizations.

Validation Testing Methods

In the following sections, we describe two software validation methods that are
appropriate for our practitioner audience: white- and black-box testing. These methods
meet the needs of practitioners because: (a) they are simple yet effective methods that
require little in-depth knowledge of software validation testing and (b) they are efficient
in that they allow the examiner to quickly test only those functions that will be used in

the current case.

White-Box Testing

White-box testing (WBT) involves examination of the source code on which the
application is built as well as tests comparing the performance of the software against
requirements. A requirement is a specification of something that the software must do.
Requirements are developed during the software design requirements phase, one of the
first phases in the software engineering process.

A formal examination of the source code is called a code walkthrough and has two major
requirements. First, the source code on which the application is built must be available
for review. Most commercial vendors are reluctant to make source code available to
external reviewers due to intellectual property concerns. Thus, code walkthroughs
conducted by parties external to a vendor are not common.

The second requirement is that team members conducting the walkthrough ideally
consist of individuals with solid technical skills and expertise in two areas. Some
members, such as programmers and software engineers, will have expertise in program-
ming and software enginecring. In addition, a code walkthrough requires participation
by parties with domain knowledge of the tasks to be performed with the software. In the
context of digital forensics this will include forensic experts with knowledge about media
composition, file systems, forensic tasks, and so forth.

Code walkthroughs are sufficiently labor intensive—moderate size applications may
contain hundreds of thousands or even millions of lines of code—which they may take
months or even years to complete. Code walkthroughs, while thorough, are of limited use
to members of the computer forensic community dealing with the rapidly changing
software environment associated with digital evidence recovery tools.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

broducts and
r, Pollitt, &

y to test and
- of software
ols written by
ditional func-
»ssitis widely
yanizations.

hods that are
"hese methods
> methods that
oy are efficient
will be used in

- on which the
oftware against
ftware must do.
hase, one of the

d has two major
st be available
ode available to
e walkthroughs

through ideally
y0 areas. Some
rtise in program-
res participation
s software. In the
:dge about media

;pplications may
-h they may take
are of limited use
apidly changing

ns without written

Validation of Digital Forensics Tools 95

Black-Box Testing

Black-box testing (BBT) evaluates software by comparing its actual behavior against
expected behavior. Unlike WBT, BBT assumes nothing about the internal structure of
the application (i.e., the source code). In BBT the software serves essentially as a “black

box” and the performance of the application is evaluated against functional require-
ments.

In a digital forensics context, BBT is performed using a tool to perform forensics tasks
under various conditions, such as; different file systems, various digital artifacts,
different hardware, and various software parameters (switches and settings, etc.). The
results of these tests across different conditions are compared against the software
design requirements. If the tool performs as specified in the requirements then we have
a level of confidence that the tool will work as expected under similar conditions. A
positive outcome indicates we have validated the tool for the current task and conditions
only; however, this confidence in the tool does not extend to conditions not covered in
the test validation. For instance, a validation study may demonstrate that a tool passes
a test for searching for non-fragmented ASCII encoded keywords. This result does not
generalize to other text encodings, such as UNICODE, UTF-8 or even to ASCII text
fragmented across non-contiguous clusters. Representations about a tool’s capability
only extend as far as the conditions covered during tool testing.

BBT can be performed more quickly than WBT because it does not include a code
walkthrough; however, it can still be a time consuming process as a thorough validation
test may include several dozens to hundreds of test scenarios, each of which includes

- different combinations of hardware, test media, and software parameters. In a typical
- thorough validation it is crucial to exercise a tool over its full range of user selectable
“parameters and against a number of different data sets or test samples. Although one or

two tests may produce positive results, there can always be situations where the tool will
fail, situations that are unusual enough to have not been tested or addressed by the
designers. Some peculiar combination of set-up parameters, operating criteria, and so on,
may reveal a hidden error (i.e., software bug) that, while rarely occurring, may invalidate
a tool’s functionality for a particular set combination or variables.

Just-in-Time Validation

Just-in-time validation is a testing methodology that involves testing software tools
using only those parameters (file systems, file types, software switches, hardware, etc.)
that will be used in the actual collection and/or analysis of the evidence. For instance,
if a forensic examiners task is to use tool X to identify graphical images on an NTFS
formatted volume, then the tool validation test should use only those parameters (file
system=NTFS, file types=graphics, etc.) that duplicates the actual task. The set of
parameters used in the test will be a subset of the total set of parameters available to be
tested. However, only testing those conditions that are required at the time can save
effort that would otherwise go into testing test scenarios that are irrelevant for the current
case.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

96 Craiger, Swauger, Marberry & Hendricks

Just-in-time validation may be conducted using either a validated reference data source
or using a comparative analysis, each of which we describe below. First we describe tool
validation procedures as promoted by the Scientific Working Group on Digital Evidence
that will serve as the basis for our tool tests.

SWGDE Guidelines for Validation Testing

The best source for guidance for digital forensic tool validation is from the Scientific
Working Group for Digital Evidence (SWGDE) Recommended Guidelines for Validation
(Scientific Working Group for Digital Evidence, 2004). SWGDE is composed of members
from law enforcement (local, state, federal), industry, and academia whose goal is to
create standards for digital evidence (www.swgde.org).

SWGDE’s guidelines for validation testing describe the procedures one should follow
in validating digital forensics software. The guidelines specify that tool validation
includes creating a test plan, performing the tests specified in the test plan, and
documenting the results. Below we will use SWGDEs guidelines to demonstrate just-in-
time validation of a tool’s capability for identifying and recovering deleted files on a
floppy disk.

Using the SWGDE guidelines our first step is to develop our test plan. A test plan
specifies the tool and its functionality to be tested, as well as how the tool will be tested.
The test plan includes a description of the purpose and scope of the test, the requirements
(tool functionality to be tested), a description of the testing methodology, the expected
results, a description of the test scenarios, and a description of the test data.

In our example we will test tool X’s capability toidentify and recover deleted files, a very
common forensic task. Our purpose and scope might be written as: “To validate tool X’s
capability to identify and recover deleted files on a FAT12 formatted floppy disk.” Next

we specify three requirements that the tool must exhibit:

The tool must be able to identify deleted files and mark them in an unambiguous
fashion so that the examiner may differentiate deleted from non-deleted files.

2. Thetoolshould be able to identify and display metadata for deleted files, to include
the files size, modified, access, and created times.

3. Thetool mustbe able to recover, and export, the logical contents of the deleted file
to the host file system.

Based on the requirements we can then specify the expected results for the test:

The tool shall mark each deleted file to differentiate deleted from non-deleted files.

2. The tool shall display and unambiguously label the deleted files metadata.

The tool shall write the contents of the deleted file to the host file system using a
unique name for each file recovered.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

ata source
scribe tool
1 Evidence

» Scientific
-Validation
of members
e goal is to

ould follow
1 validation
t plan, and
trate just-in-
ed files on a

A test plan
/ill be tested.
equirements
the expected
lata.

d files,avery
idate tool X’s
y disk.” Next

unambiguous
leted files.
les, toinclude

he deleted file

- the test:
n-deleted files.

netadata.

system using a

s without written

Validation of Digital Forensics Tools 97

Table 1. Example test plan

Test # | Environment Actions Requirement Expected Result
001 1. 1.4MB Floppy Recover and Recover and 1. Tool shall recover and export
2. FATI12 Export Export Deleted File each file to the host file system.
3. File Ain Deleted File (logical) 2. Hash of the recovered file shall
directory A (logical file match the hash of the original
only) file.

4. The hash of the recovered file shall match that of an original copy of the file. (This
ensures that the file recovered is exactly the same as the original.)

Next we specify the test scenarios. A test scenario specifies the conditions under which
the tool will be tested, as well as the pass/fail criteria for each test scenario. For instance,
a test scenario for recovering deleted files might look something like Table 1.

Finally, we describe our test data. In this case our test media is a 1.4MB floppy disk,
formatted with the FAT12 file system. Our digital artifacts (files) to be recovered include
two sets of files: a non-deleted and a deleted version of File A (a small file < 1K), and a
non-deleted and a deleted version of File B (a moderately sized file of ~ 60K). Our next
step is to prepare the test media that will be used in our testing.

To ensure a scientifically rigorous test we must first sterilize our media to ensure no file
remnants remain on the test media, which could bias our results. The test media
preparation methodology occurs as follows:

1. “Sterilize” the media by writing a series of characters over the entire writeable area
of the media, from the first to the last sector. Typically, Os (zeros) are written to the
entire disk. (In our experience, using Os make its easier to determine whether a
complete sterilization of the media was accomplished). Sterilization is accom-
plished easily using Linux command line utilities (see Craiger, 2005). Most commer-
cial tools provide this capability.

2. Format the floppy disk to create a file system. The choice is important as we wish
to extrapolate from our test to the real-world media we will use. In this case, itis a
FAT12 formatted floppy.

Copy our test files to the media.
Delete some of the files.

Write block the floppy to prevent from changing the contents inadvertently.

S

Create a forensic duplicate (exact copy) of the image. Again, Linux command line
utilities may be used (Craiger, 2005), or any commercial tool that provides that
capability.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

98 Craiger, Swauger, Marberry & Hendricks

7.
values should match.

Running the Test Scenarios

Calculate ahash (e.g., MDS or SHA-1) for both duplicate and original. These hash

The forensic duplicate now constitutes our validated reference data source. We are now
prepared to run the test according to our test plan. Figures 1 through 3 demonstrate a
test scenario using X-Ways Forensics (www.x-ways.net or www.winhex.com) capability
of identifying and recovering deleted files on a FATI2 floppy.

Figure 1. Unique marking of deleted files

Dfi\}e A 'Flopp C
-
Fename = 1Ext | Size {Created ... IModfied . T Accessed
"3 Fie_a 20 bytes 05/05/2005 11:30:21 05/05/2005 10:59.00 05/05/2005
|} File_b 61.8KB 05/05/2005 11:3013 03/26/2005 1311:58 05/05/2005
deleted_a 20 bytes 05/05/2005 11:30:19 05/05/2005 10:59.00 05/05/2005
61.8KB 05/05/2005 11:30:16 03/26/2005 1311:58 05/05/2005

7" deleted_b

Figure 2. File recovery menu item

Diive A IFlopp;lrdosl;U

\
Filename = JEst ISie o Ceated .~ - IModfied . Accessed . 1A |
20 bytes 05/05/2005 11:30:21 05/05/2005 1059.00 05/05/2005 A
61.8KB 05/05/2005 11:30:13 03/26/2005 1311:58 05/05/2005 A
gabtes [05/05,2005 11:30:15 [05/05/2005 10:55.00 _
View K8 05/05/2005 11:30.16 03/26/2005 1311:58 05/05/2005 A
External Programs »
Position 4 MB
Sectors” B add To Active Case endar ! Legend - , Access W ;ﬁd SW‘CT, BRI

Figure 3. Hashing of original and recovered files

WinMD5 v2.05 {C}) 2003-2004 by eolsonemit.edu

G OX)

File Edit' Help .

Currently Processing: ~ [idie) .

{0 items enqueued) L
pach” ! Hash i Bytes .- i Status]
-eleted_a ce37aae767755a75df66e6aactla’al3s 20 Unknown
file a) ce37ane767755a75df66e6aectlaldalds 20 Unknown
-eleted_b B405465edcc0665a94dc8dabfcIfc?dd 63234 Unknown
file b 8405465edcc0665a94dcB8dasfcIfc7d9 63?34 Unknown

Cear | Abot § 7.7 Number of known md5 hashes found in MD5SUM files: . 0 -

Drag files and‘MDSSUM\ﬁles (if avadlable) into this window. i Mgzllww.big‘ tmx .cum‘/_s_o_ﬂwiate

permission of Idea Group Inc. is prohibited.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

al. These hash

e. Weare now
 demonstrate a
com) capability

o 0

com/software

—

>rms without written

Validation of Digital Forensics Tools 99

Figure I shows that we open our forensic duplicate in the tool and note that it displays
our four known files on our validated reference data source. Figure 1 indicates that the
tool unambiguously identifies deleted files using a “?”. The tool thus passes our first
requirement.

The nextrequirement specifies that the tool allow for the recovery of deleted files. Figure
2 demonstrates that the tool provides a menu selection torecover deleted files. We select
the menu item, specify the location of the file, and the tool writes the recovered file to
the host file system. Our tool thus passes the second requirement.

Requirement three is important as it determines whether the logical portion of the file was
successfully recovered. To be forensically sound, the hash of the recovered files must
match the hash of the original files. Figure 3 demonstrates that the original and deleted
files are hashed using the MD5 cryptographic hash, a 128-bit hashing algorithm. Note
that the deleted and original files hashes match, indicating that the tool successfully
recovered the file, and thus, it passes the final requirement.

The results of our tests were consistent with the expected results, indicating a positive
outcome of the tool validation test.

This example was a simple test of a tool’s requirement for identifying and recovering
deleted files using the SWGDE guidelines for tool testing using BBT. Next we discuss
a second method of testing that can be performed without a validated reference data
source.

Comparative Analysis

The example above illustrates the use of a validated reference data source (i.e., test media

" with known contents) to validate the functionality of a software tool using BBT. A

second method, what we call acomparative analysis, is useful when a validated reference
data source is either unavailable, or the creation of which would require a significant
investment of time and resources that would imprudently delay the actual examination
of the evidence. Note that comparative analysis also uses BBT as the test design method.

The key to acomparative analysis is to compare the results across multiple independent
tools. Tools are independent in the sense that they are written by independent teams of
programmers, and are usually from different commercial vendors or are open source
alternatives. Versions 1.0 and 1.1 of the same tool would not constitute independent
tools. If all three tools return the same result, then we have supporting evidence that the
software functions as intended. We have a stronger claim for validation when one or more
of the tools have been validated using a reference data set. For instance, if tools Y and
Z were previously validated using a reference data set, then we have stronger evidence
of validation when tool X produces the same results as tools Y and Z. The claim is weaker
if only one of the other tools has been validated. If none of the other tools have been
validated, the confidence is the weakest, although the fact those three tools created by
three separate programming teams returned the same result can be interpreted as
triangulating on those results. :

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

100 Craiger, Swauger, Marberry & Hendricks

Table 2. Comparing results of tools

[Find Keyword
UNICODE ASCHI UTF-8
Tool X Y Y Y
{ Tool Y Y Y Y
[Tool Z Y Y | Y

The actual testing procedure is the same as that described previously in the BBT section.
A test plan is created, and then each of the tools is tested, following the test plan, and
using the test media. After the tools have been tested, we compare the results for each
tool as demonstrated in Table 2.

Table 2 illustrates the simple case where three tools are used to recover three files
differing in the type of encoding (A = UNICODE, B = ASCII, C=UTF-8). Eachof the tools
successfully identified the keyword in the different encodings. The results suggest that
we can have a measure of confidence in the three tools given that they triangulated on
the same result. We have more confidence in our results if one of the tools had been
validated previously using a validated reference data source.

What if the tools do not produce the same results? Reality may not be so clear-cut for
the simple reason that even the best designed software will contain bugs (as demon-
strated by the prevalence of service packs and interim patchreleases one sees on a weekly
basis). Below we discuss software errors and how to calculate error rates.

Metrics and Errors

There are several validation metrics against which software may be tested, two of the
most common of which are performance (speed) and errors. Typically speed will not be
of utmost importance to the forensic practitioner. For the digital forensics practitioner
the most significant metric will be whether the software performed as expected, as
measured by the error rate of the tool.

In the Daubert decision, known or potential rates of error, and error type should be
considered when evaluating a scientific technique. Two statistical error types of interest
are false positive (Type I) and false negative (Type II) errors. False positive errors occur
when a tool falsely identifies a positive result when none is present. For instance, using
a validated reference data source, Tool X identifies a file as deleted when in actuality it
is not. False negative errors occur when a tool fails to identify results that are actually
there. For instance, Tool X fails to identify a file as deleted when in actuality it is.

As an example, consider a forensic tool whose purpose is to scan digital media to detect
.jpg graphic image files. The primary designrequirement of the software, from a forensic
point-of-view is to detect obfuscated jpg image files, for example, when a user changes

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Validation of Digital Forensics Tools 101

a jpg extension as a means of hiding the files true type. The tool works by scanning file
headers and footers (i.e., the first and last few bytes of a file that determine the files real
type) and comparing the files true type with its extension. Normally, the file header/footer
and extension will match. However, a simple way of hiding a file is by changing its
extension.

EREEE

For test media we use a hard drive with 50 files, five of which are jpg files. Of these five
jpgfiles, twohave an extension other than anormal jpg file (.jpg or .jpeg). The hard drive
constitutes our reference data set.

The tool’s performance is evaluated by comparing the tool’s results with the expected
results: which is the tool’s ability to detect extensions that do not match the files
signature. One expected result is that the tool should identify all instances of .jpg image
the BBT section. ; files, regardless of the extension, using header information. A second expected result is

the test plan, and that the tool should not misidentify any non-jpg files as .jpg image files.

e results for each Table 3 shows the result of a test where the tool found all instances of jpg files on the
hard disk.

.cover three files 1 B In this example, the tool successfully passed the test by (a) detecting all instances of the

). Each of the tools 4. jpg images, both with and without the correct extensions, and (b) not identifying non-

.sults suggest that . jpg files as jpg files. Out of the 50 files on the test hard drive, all 50 were correctly identified

>y triangulated on by type. In this case, the tool has proven 100% accurate (correctly identified divided by

he tools had been - the total number) with an error rate of 0%.

; Now let us consider the case where the tool missed several jpg files as illustrated in Table
be so clear-cut for 4. In this example, the tool failed to detect some jpg files on the test hard drive. Of the
1 bugs (as demon- 50 files, only 48 were correctly identified. In this case, the tool has displayed an accuracy
1e sees on a weekly . of 96 percent and displayed two false-negative, or Type II, errors.

- rates. g

Table 3. Search results for JPG detection tool
e tested, two of the

ly speed will not be 1 [Known JPG Files | Tool X Discovered JPG Files
rensics practitioner 3 | Testl.jpg Testl.jpg
ied as expected, as : Booty.jpg Booty.jpg
4 Hidden.txt* Hidden.txt
_Byebye.zip* Byebye.zip
-ror type should be Test2.jpg Test2.jpg

ror types of interest
)ositive errors occur
For instance, using

hen ality it Table 4. Search results for JPG detection too!
when in actuall

dlts that are actually 1 JPG File List of Discovered JPG Files
n actuality it is. 3 ’ Testl.jpg Testl.jpg
. ; Booty.jpg Booty.jpg
gital media to detect 1 Hidden. txt* (FAIL)
vare, froma f(;lrenslz Byebye.zip* (FAIL)
when a user change Test2.jpg Test2.jpg

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

forms without written

102 Craiger, Swauger, Marberry & Hendricks

Table 5. Search results for JPG detection tool

JPG Files List of Discovered JPG Files
Testl.jpg Testl.jpg

Booty.ipg Booty.jpg

Hidden.txt* Hidden.txt

Byebye zip* Byebye.zip
Test2.jpg Test2.jpg
Document.doc (FAIL)

Now, let us consider the results as seen in Table 5. In this example, the tool successfully
identified all jpg format files on the test hard drive, howeverit misidentified a Microsoft
Word file (with the .doc extension) as a jpg image. In this case, the tool correctly identified
49 of the 50 files, resulting in a correct score of 98%, or a 2% error rate, and returned a
false-positive, or Type I, error.

(Although not relevant for just-in-time validation, full-blown validation tests would
include the above test run using other test media in order to generate more reliable
statistics. Forexample, if the tool was run three times with the results as indicated above,
the average accuracy would be (100 + 96 + 98)/3, or 98%, with a standard deviation of 2
(2%) and displayed both Type I and Type Il errors. The larger the number of test samples,
or the larger the number of relevant data in the test sample, and the more times the tool
is tested against different test media, the higher the confidence in the results of the test.)

Identifying Error Causes for Validation Testing

When a test of a software application results in test failures the most important task is
to attempt to determine the cause of the test failure. In the examples above, the bit patterns
of the files that were not correctly identified should be examined, and their location
relative to disk sector or cluster boundaries should be reviewed. It could be that the tool
is coded in such a way that it is not looking at the entire header or footer field, or has a
coding error that allows it to misread the header, footer, or extension information. In
addition, itmay be possible that the tool has a problem accurately identifying these fields
if they lay across cluster/sector boundaries, or if they lie in non-contiguous clusters. In
the example used in this chapter above, further testing and analysis of the test hard disk
should be performed to determine if any identifiable cause for the failures could be found.
Further testing based on this and other scenarios should be performed to gather further
data.

It should be noted that a limited number of failures does not necessarily completely
discredit the use of the test tool software. The failure needs to be interpreted with respect
to both the entirety of the test results and the nature of the failures. Depending on the
manner in which the tool is to be used, a certain error rate may be acceptable if that error
rate and the error types are known and taken into account in the analysis of the data
recovered.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.

s tool successfully
htified a Microsoft
~orrectly identified
ate, and returned a

dation tests would
rate more reliable
as indicated above,
dard deviation of 2
ber of test samples,
more times the tool
» results of the test.)

»st important task 1s

bove, the bit patterns

i, and their location

-ould be that the tool
footer field, or has a
sion information. In
>ntifying these fields
ntiguous clusters. In
s of the test hard disk
{lures could be found.
ned to gather further

cessarily completely
erpreted with respect
»s. Depending on the
cceptable if that error
: analysis of the data

¢ forms without written

Validation of Digital Forensics Tools 103

Test Scenarios

Note that just-in-time validation is efficient because of the judicious selection of test
scenarios. Just-in-time validation only includes test scenarios that are immediately
relevant to the current task. Contrast this with full-blown validation testing, the purpose
of whichisto draw inferences about an entire population of tasks, some of which include
highly improbable boundary conditions.

Selecting or creating test scenarios for full-blown validation testing is one of the most
challenging aspects of validation testing. The set of test scenarios should consist of a
number of heterogeneous examples that duplicate conditions that will be found in real
world forensic tasks. In addition to common types of data, the test scenarios mustinclude
boundary cases. Boundary cases are conditions or examples of things the tool must be
capable of detecting even if they are rarely found in mostsituations. Recovering a 100GB
file is an example of a boundary condition for the task of recovering a deleted file. If the
tool correctly reports the results from real-world examples as well as boundary cases, then
we can say with some authority that the software functions as expected.

A test scenario would ideally include test media containing a complete set of variables
and data to thoroughly exercise the application. The advantage of running the tool
against a known standard is that the results are known a priori given that the examiner
knows what exists on the test media. The disadvantage is the time and effort to create
the test medial, which can be extensive, and the potential lack of knowledge about the
range of variables that can exist. For example, consider the case of a test of a simple
keyword extraction software package, which searches a hard disk for the presence of a
keyword or keywords. To perform even a moderately extensive test of this application,
the following conditions must be tested, with corresponding test cases produced: (1) five
different HD sizes must be used that fall within the traditional hard disk size boundaries;
(2) each drive must be presented with both the default and non-default cluster/sector
size; (3) the disks must be partitioned in a variety of common formats (FAT 32, FAT 16,
NTES, and EXT3); (4) the keyword(s) that are to be searched for should be present in
various formats, including at aminimum: Unicode, ASCII, UTF-7, UTF-8, and RTL; (5)
the keyword(s) to be searched for should be placed on the disk in such a way that various
locations relative to the physical clusters are presented for test, in other words, lying
entirely within one cluster, and crossing cluster boundaries for both the contiguous and
non-contiguous cluster cases; (6) and the keyword(s) that are to be searched for should
be placed on the hard disk embedded in other characters with no leading or trailing
spaces, embedded in other characters but with one leading and trailing space (e.g., null
character), and alone with no leading or trailing characters.

This is only a partial, although fairly comprehensive, approach to performing a validation
test of akeyword search and extraction algorithm/software package. Certainly additional
encodings and other disk partitioning and cluster sizes could be tested. In addition, to
more fully test the software, a wide variety of different keywords could be tested, as the
algorithm may always find a specific combination of characters that it might not detect
(though one can carry this to extremes if one is pedantic enough). As itis, even testing
for only one keyword using the above approach, 1800 different individual test cases must
be prepared, and if only one partition type is used on each hard disk, 20 hard drives must

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

104 Craiger, Swauger, Marberry & Hendricks

be prepared for testing. This represents a significant amount of time and effort for both
test preparation as well as test performance, with test preparation taking significantly
more time than it takes to perform the test.

In the creation of test scenarios for computer forensic applications, this requires that an
expert with extensive knowledge of both computer hardware and operating system
standards is involved with the test scenario and test media creation. This expertise is
required to ensure that the test scenario and media does not overlook important
conditions or data that would diminish the validation tests thoroughness.

Conclusions

The Daubert decision will continue to have a major impact on the practice of computer
forensics practice as courts and litigants become more technically savvy. The case will
also serve to modify expectations of scientific testing of computer forensics tools used
to create evidence in these court cases. The thrust of this chapter was to provide an
overview of tool validation for digital forensics examiners with limited training and
experience in tool testing. Unfortunately, there is very little literature that directly and
specifically addresses digital forensic tool validation. The best sources are the SWGDE
Guidelines (2004) and documents at National Institutes for Standards and Testing
Computer Forensic Tool Testing site (www.cftt.nist.gov).

As the number of forensic software applications continues to increase, and the environ-
ment that the tools must operate in continually evolves with the development of new
operating systems and computer applications, traditional, intensive software validation
will continue to be unable to keep pace with the requirements of the forensic community
for validated software. Individual forensic practioners, as well as major labs and
accrediting bodies, must be capable of performing validation of tools to some degree of
rigor if the results of such tools are to continue to be accepted as evidence in legal
proceedings. The approaches presented in this chapter, when applied with due diligence
and documentation, will be called upon more and more to provide the required validation
and assurance that forensic software applications perform as required.

References

Center for Biologics Evaluation and Research, U.S. Food and Drug Administration. U.S.
(2002). General principles of software validation; Final guidance for industry
and FDA staff. Retrieved from http://www.fda.gov/cdrh/comp/guidance/938.html

Craiger, J. (in press). Computer forensics procedures and methods. To appear in H.
Bidgoli (Ed.), Handbook of Information Security, Volume IIlI. New York: John
Wiley & Sons.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

ffort for both
significantly

quires that an
rating system
is expertise 18
ok important
S.

S ——————8)

ce of computer
/. The case will
1sics tools used
s to provide an
ed training and
hat directly and
ire the SWGDE
ds and Testing

ind the environ-
lopment of new
tware validation
nsic community
major labs and
» some degree of
vidence in legal
ith due diligence
quired validation
1.

——————————

ninistration. U.S.
ance for industry
zidance/938.html

To appear in H.
New York: John

‘ms without written

Validation of Digital Forensics Tools 105

Craiger, J., Pollitt, M., & Swauger, J. (in press). Digital evidence and law enforcement. To

appear in H. Bidgoli (Ed.), Handbook of Information Security, Volume IIl. New
York: John Wiley & Sons.

IEEE Computer Society. (2004). IEEE 1012 Software Verification and Validation Plans.
Retrieved from http://standards.ieee.org/reading/ieee/std/se/1012-2004.pdf

IEEE Standards Association. (1993). IEEE 1059 Guide for Software Verification and
Validation Plans. Retrieved from http://standards.ieee.org/reading/ieee/std_public/
description/se/1059-1993_desc.html

IEEE Standards Assocation. (1997). IEEE 1074 Standard for Developing Software Life
Cycle Processes. Retrieved from http://standards.ieee.org/reading/ieee/std_public/
description/se/1074-1997_desc.html

Scientific Working Group for Digital Evidence. (2004). Recommended Guidelines for
Validation Testing. Retrieved from www.swgde.org

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

